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Intermediate-Range Forces? 
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It is shown that an intermediate-range variation in the gravitational "force" can 
be obtained through a generalized scalar-tensor theory of gravity. 

The possibility of intermediate-range interactions (meters to kilometers) 
has been relatively unexplored (Fitch et al., 1988). Experimental evidence 
and theoretical arguments suggest that such interactions may exist. Deep 
mine measurements of the gravitational force at various depths have given 
values of the gravitational constant G which may not agree with determina- 
tions at the surface (Long, 1976; Scherk, 1979, 1980; Gibbons and Whiting, 
1981; Stacy and Tuck, 1981; Holding and Tuck, 1984; Holding et al., 1986). 
The recent reanalysis of the E/Stv6s experiment (E6tvSs et al., 1922) by 
Fischbach et al. (1986) has given evidence for intermediate-range forces 
which gives rise to a reduction in the apparent gravitational constant over 
intermediate distances. To account for this possible difference, they postu- 
late the existence of a new force, 

Should this intermediate-range variation in the gravitational constant 
be confirmed, it can be explained via a purely gravitational (scalar tensor) 
theory (Cohen, 1964). This theory is based on the Lagrangian 

L =  A I R  + A2~b'~fb.~ + A3 + A4LM + As~bI2 (1) 

where R is the scalar curvature, ~b, is the derivative of a scalar field ~b with 
respect to x ~, the A's are arbitrary functions of ~b, and LM is the Lagrangian 
of matter, electromagnetic fields, etc. Any Lagrangian L of the form given 
by equation (1) has the property that under conformal transformations 
(Synge, 1960) (i.e., rescaling) of the metric g,~, L is mapped onto another 
Lagrangian of the same general form. In Einstein's theory of gravity 
(Einstein, 1916, 1955) m 3 gives rise to the cosmological constant. Here m 3 

is a function of ~b, which can also give rise to a mass for the scalar field. 
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The field equations of the theory are obtained by varying the action 
integral 

I --- f d ' x r  t (2) 

with respect to & and g~'~, respectively. 
One notes that 

A56~ = (A56,~) ;~ - A~@~th., (3) 

where the prime denotes differentiation with respect to ~b. For a large class 
of As, the first term on the rhs of equation (3) can be converted to a 
vanishing surface integral at infinity, when substituted into equation (2). 
At this point restrict attention to those Lagrangians L* for which A5 has  
this property. Since the A's are arbitrary, a Lagrangian of the form 

L =  A~R + A2fb"~c~,,~ + A3 + A4LM (4) 

gives rise to the same action as L*. 
Varying the action integral I for L given by equation (4) with respect 

to ~b gives 

2A24,~ = A'I R - A~cb "'~ 6,,~ + A~ + A'4LM (5) 

Varying the action integral I with respect to g"~ gives 

O=A1G~,,  + A2(0,~ th,~ - ~g~bl ,,~ c~,o,)_~A3g~,_vAaT.~_(A1;~_gt~,,A1;o~)l ~ ,,~ 
(6) 

where, for those functions A1 which do not change sign, without loss of 
generality, we can rescale g, ,  such that 

A1 = K + ~b (7) 

with K a constant. Below, this expression for A~ is employed. 
Contraction gives 

- A a R  - A24,'" O;~ - 2A3 + 3thai - � 8 9  = 0 (8) 

Eliminating R by substituting equation (8) into equation (5) yields 

' A' A' 
o~ Z ~ l  _ m t (2A2-3A~'~d"~=@ 0,~( Z l a 2  2 ) + ( A ~ - 2 A 3 ~ )  

A~A4 
+ A'~LM - ~ T (9) 

If we now choose A2 such that 
! ! 

A~+A2=0 (10) 
A~ A2 
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this implies 

A2AI = g (11) 

where g is a constant. Hence the 0"~r term in equation (9) vanishes. 
Substituting equation (11) into the first parenthesis in equation (9) yields 

3A~ 2 K - 3  
2A2 - - - - -  (12) 

A1 A1 

When this is substituted into equation (9), we obtain 

(2K - 3 ) 4 G  - ( A,A'3 - 2A~ A3) = -�89 T + A ,A  '4LM (13) 

A number of special cases may be of interest. If A3 =/3~b2+ yr + Ky/2,  
with/3 and 3' arbitrary constants, the third parenthesis in equation (9) gives 

AIA'3- 2A~A3 = (2K/3 - 3')r (14) 

Also, if we set 

A~=0 (14a) 

that implies (Eddington, 1960) 
x p  T.~=0  

If both of those assumptions are made, we can obtain a Klein-Gordon 
equation for r 

r  - m 2 r  = - B T  ( 1 5 )  

if m 2 > 0 and 

mZ = 2K/3 - 3' 
2/( - 3  

A4/2 
8 :  _ ( 1 6 )  

2K - 3  

For weak fields, and in the free space exterior to a spherical body, 
equation (15) can give a Yukawa-like falloff in r Here m may be determined 
experimentally. If m is of intermediate range, e.g., between 10 -1 and 
10-Tin -1, then light-bending, perihelion advance, and other planetary 
experiments will give results in agreement with general relativity. 

Equation (6) gives the other set of field equations 

I A4T~,," A 2 (  1 ) 
G ~ -  2 a l  -A~ r162 g~"&'~r 

1 m 3 .-k 1 (AI,.,,-g,,,Ai~,~) (17) 
+2  a---~ g~  A--'-~ 

Equations (17) and (13) constitute the general equations of the theory. 
If A3 = 0, K = 0, and A4 is constant, we recover the Brans-Dicke scalar 
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tensor theory (Brans and Dicke, 1961; Jordan, 1955, 1959). If ~b is constant 
and A3 = 0, we recover Einstein's original general relativity equations (Gib- 
bons and Whiting, 1981). If ~b is constant and A3 ~ 0, we recover Einstein's 
equations with nonvanishing cosmological constant. Other related work 
(Minkowsky, 1977; Zee, 1981; Bekenstein, 1986) involving Newton's gravi- 
tational constant, the Klein-Gordon equation, and a variational principle 
may also be of interest, since Newton's constant and the masses of all fields 
are generated spontaneously via a symmetry-breaking mechanism in a 
quantized theory. For an excellent review of massive scalar-tensor theories 
see Wagoner (1970) (see also Acharya and Hogan, 1973). 
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